
Calculation of Gauss Quadrature Rules* 

By Gene H. Golub** and John H. Welsch 

Abstract. Several algorithms are given and compared for computing Gauss 
quadrature rules. It is shown that given the three term recurrence relation for the 
orthogonal polynomials generated by the weight function, the quadrature rule may 
be generated by computing the eigenvalues and first component of the orthornor- 
malized eigenvectors of a symmetric tridiagonal matrix. An algorithm is also pre- 
sented for computing the three term recurrence relation from the moments of the 
weight function. f 

Introduction. Most numerical integration techniques consist of approximating 
the integrand by a polynomial in a region or regions and then integrating the 
polynomial exactly. Often a complicated integrand can be factored into a non- 
negative "weight" function and another function better approximated by a polyno- 
mial, thus 

rb fb N 

bg 
= a 

co(t)f(t)dt E wjf(tj) a a v~~~~~~~=1 
Hopefully, the quadrature rule { wj, tj} L corresponding to the weight function 
co(t) is available in tabulated form, but more likely it is not. We present here two 
algorithms for generating the Gaussian quadrature rule defined by the weight func- 
tion when: 

(a) the three term recurrence relation is known for the orthogonal polynomials 
generated by co(t), and 

(b) the moments of the weight function are known or can be calculated. 
In [6], Gautschi presents an algorithm for calculating Gauss quadrature rules 

when neither the recurrence relationship nor the moments are known. 

1. Definitions and Preliminaries. Let co(x) _ 0 be a fixed weight function defined 
on [a, b]. For w(x), it is possible to define a sequence of polynomials p0(x), p1(x), * 
which are orthonormal with respect to w(x) and in which pn(x) is of exact degree n so 
that 

rb 

fb (x)pm(x)pn (x)dx =1 whenm = n, 
(1.1) a 

=0 when m 5 n . 

The polynomial pn(x) = kn fnlj (x - ti) , kn > 0, has n real roots a < ti < t2 < 
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* < 4, < b. The roots of the orthogonal polynomials play an important role in 
Gaussian quadrature. 

THEOREM. Let f(x) & C2N[a, b], then 
fb N f+2N X 

o @(x) f (x) dx = E wjf (tj) + ( N k2 (a < 
t < b) 

a _~~~= (2N) !kN 

where 

wj - p N+ 1 (PN'@j) = dpj(t) | ) = 1, 2, *., N. 
kN PN+1 (tj)PN (tj)' t t= t; 

Thus the Gauss quadrature rule is exact for all polynomials of degree ? 2N - 1. 
Proofs of the above statements and Theorem can be found in Davis and Rabino- 

witz [4, Chapter 2]. 
Several algorithms have been proposed for calculating {wj, tj}f=f ; cf. [10], [11] . 

In this note, we shall give effective numerical algorithms which are based on de- 
termining the eigenvalues and the first component of the eigenvectors of a sym- 
metric tridiagonal matrix. 

2. Generating the Gauss Rule. Any set of orthogonal polynomials, { pj(x) } f>, 
satisfies a three term recurrence relationship: 

1 pj(x) = (ajx + bj)pj1.(x) - Cjpj2 (X) 

j = 1, 2, ...,N; p-,(x) 3 O po(x)-- 

with a3 > 0, cj > 0. The coefficients {aj, bj, cj} have been tabulated for a number of 
weight functions co(x), cf. [8]. In Section 4 we shall give a simple method for generat- 
ing {aj, bj, cj} for any weight function. 

Following Wilf [12], we may identify (2.1) with the matrix equation 

po(x) -bi/ai, 1/ai, 0 P po(x) 

pi (X C2/a2, -b/a2, 1/a2 ? pi (x) 

x- 

PN_1(X) L NC/aN, -bN/aN iLPN-1 (X) 

F0I 

I+I 

LPN(X)/aNJ 
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or, equivalently in matrix notation 

xp(x) = Tp(x) + (l/aN)pN(x)eN 
where T is the tridiagonal matrix and eN = (0, 0, *. . , 0, 1) T. Thus PN(tj) = 0 if and 
only if tjp(tj) = Tp(tj) where tj is an eigenvalue of the tridiagonal matrix T. In [12], 
it is shown that T is symmetric if the polynomials are orthonormal. If T is not sym- 
metric, then we may perform a diagonal similarity transformation which will yield 
a symmetric tridiagonal matrix J. Thus 

al 01 ? 

131 a2 32 

0* 

DTD-1= J= 

O * * AN-1 

_ N-1 aN j 
where 

(2.2) ~ ~ ~ ~ ~ ( 
i C+1 )1/2 (2.2) On = _ 

_,Ad(il/ 

It is shown by Wilf [12] that as a consequence of the Christoffel-Darboux 
identity 

(2.3) Wj[p(tj)]T[p(tj)] = 1 , j = 1, 2, *., N 
where p(tj) corresponds to the eigenvector associated with the eigenvalue tj. Sup- 
pose that the eigenvectors of T are calculated so that 

(2.4) Jqj = tjq, j1, 2, ** *,N 
with qjTqj = 1. If 

T 
(2.5) qj =(ql j q2,j, , qNj)I 

then q2, = w1(po(tj))2 by (2.3). Thus from (1.1), we see 
2 2 b 

(2.6) Wi = ql,j -l = 2 f 2 (2.6) Wj 2 p 2(t ) = wk 2x= qi,j X |t?w(x)dx 9 qj X AO. Po2() ko2 
Consequently, if one can compute the eigenvalues of T and the first component of 
the orthonormal eigenvectors, one is able to determine the Gauss quadrature rule. 

3. The Q-R Algorithm. One of the most effective methods of computing the 
eigenvalues and eigenvectors of a symmetric matrix is the Q-R algorithm of Francis 
[5]. The Q-R algorithm proceeds as follows: 

Begin with the given matrix J = J(0), compute the factorization J(0) = Q MR(0) 
where Q(0)TQ(0) = I and Rt(0) is an upper triangular matrix, and then multiply the 
matrices in reverse order so that 
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J(1) = R -()Q(?) = Q(O)TJ(O)Q(O) 

Now one treats the matrix J (1) in the same fashion as the matrix J (O), and a sequence 
of matrices is obtained by continuing ad infinitum. Thus 

(3.1) j~~~~~i) =Q(t)R(t) (3.1)- 
J(i+l) = R(i)Q(i) Q(i+l)R(i+l) 

so that 

(3.2) J(i+l) = Q(i)TJ(i)Q(i) Q(i)TQ(i_1)T Q(O)TJQ(O)Q(l) Q(i) 

Since the eigenvalues of J are distinct and real for orthogonal polynomials, a real 
translation parameter X may be chosen so that the eigenvalues of J(i) - XI are 
distinct in modulus. Under these conditions, it is well known [5] that J(i) - XI con- 
verges to the diagonal matrix of eigenvalues of J - XI as i -+ oo and that p(i) = 
Q(O) X Q(1) X ... X Q(i) converges to the orthogonal matrix of eigenvectors of J. 
The method has the advantage that the matrix J(i) - XI remains tridiagonal 
throughout the computation. 

Francis has shown that it is not necessary to compute the decomposition (3.1) 
explicitly but it is possible to do the calculation (3.2) directly. Let 

{S(")}k,1 = {Q(i)}k l (k = 1, 2, . .,N) , 

(i.e., the elements of the first column of SW are equal to the elements of the first 
column of Q(i)). Then if 

(i) K(i+)- = S(i)TJ(i)S(i) 

(ii) K(il) is a tridiagonal matrix, 
(iii) J (i) is nonsingular, 
(iv) the subdiagonal elements of K(i+l) are positive, it follows that K(i+') = 

J (i+l) 
For the tridiagonal matrices, the calculation is quite simple. Dropping the 

iteration counter i, let 

(p) (p+l) 
[1 

. 1O 

/ . . . cos Q, sin , * * * (P) 

. . . . sin -os p . . . (p + 1) 

Then cos 01 is chosen so that 

{Z1Jk,1O , k 2, 3, *, N. 

Let 
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a, b 01 
bl a2 b2 

=0 

__ b.Vl 
av- 

bN,-1 aN 

The matrix 

Lal' b1' di1 
bl' a2l b2' 0 
di b2' a3 b3 ( 

0 b3 

[0 b &_ a -v 
where the primes indicate altered elements of J; then 

K = ZN1ZN_2 *** Z1JZ1 -ZN_ 

and Z2, **., ZN-1 are constructed so that K is tridiagonal. The product of all the 
orthogonal rotations yields the matrix of orthogonal eigenvectors. To determine 

W1}' 1, however, we need only the first component of the orthonormal eigenvector. 
Thus, using (2.3) 

00 
T _ 

q - [q,, ql,2, 
... 

2 ql,N] = [1, 0, 0, * *, 0] X Bj (Z1l" X Z2 X ... X ZN_1) 
i=O 

and it is not necessary to compute the entire matrix of eigenvectors. More explicitly, 
fori = 1, 2, ***,N-1 

sin Oj(i) = di) i/[(d:)2 )2 + (5b")2]1/2 

cosWj'i = b' j1/[(dJ1)2+ (b2i) 2]1/2 

ai+l) _ji) cos2 0 ji) + 2bj(i' cos Oj(') sin Oj(i) + a(+) sin2 0(i 

=( _ji) sin 0(i) 
2 

2bj(i) cos j() sin Oj(i) + ajV+)cos2 CO () 

(3.3) bj1l = b-21 cos Oj(') + d~')1 sin Oj(i) = [(b6'%1)2 + (d21i)2"12, 

= (a/i) - ai+j) sin Oj(i) cos Oj'i + bji (sin2 (i) - cos2 0/I 

=+ = b )? cos O(j), 

dj) = b(+1 sin Oj(i) Z (i+1) = zji) cos Oj + zj31 sin Oj, 

2ji= zj sin Oj - z+j cos 0j3 

with 

do(i)= b/(i), 5(i) = (a/(i) - Xi)) 

,, i) _ W i ;()_ } i i i 
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Initially 

z =1, zj0 =O forj= 2, *,N 

so that z (i)T-- qT as i - oo. In the actual computation, no additional storage is 
required for {aj(i), bj(i), bj( ), 2j(i) } since they may overwrite {ai(i), z) 1. We 
choose XCi) as an approximation to an eigenvalue; usually, it is related to the 
eigenvalues of the matrix 

rill N-1l 
aN(_ a W) LW aNi 

When b(s) 1 is sufficiently small, aN U) is taken as eigenvalue and N is replaced by 
N-1. 

4. Determining the Three Term Relationship from the Moments. For many 
weight functions, the three term relationship of the orthogonal polynomials have 
been determined. In some situations, however, the weight function is not known 
explicitly, but one has a set of 2N + 1 moments viz. 

rb 

1k f (x)xkdx k = O1, **, 2N. 

Based on an elegant paper of Mysovskih [9], Gautschi*** has given a simple deriva- 
tion of the three term relationship which we give below. This result also follows from 
certain determinantal relations (cf. [7]). 

Let i C En be a domain in n-dimensional Euclidean space and w(x) > 0 be a 
weight function on Q for which all "moments" 

1.Y1.sy2. - -n = f w(X)X17'X 27 
2 

X . nxdx 

exist, and juo O,... ,o > 0. Enumerate the monomials 

Xi X2 Xn 71 >=O< " ,n ? 

as {I Si(x) } Ll, whereby i < j if degree so < degree soj, the enumeration within the 
same degree being arbitrary. In particular, 'pl(x) = 1. Let 

M = [(i, qILj=i = {mi1} 

denote the "Gram matrix" for the system {I s(x) } where 

(f i, (Pj) = o(x)pi(x)(<i(x)dx. 

Note M is positive definite. Let M = RTR be the Cholesky decomposition of M with 

{ ~~~~2 
ri= mii- S rki) 

k=l 

and 
/ i-i 

(4.1) rij=m i- rkirki)/rii, i<j 
k=il 

*** Personal communication. 
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for i and j between 1 and L. Let 

Sil S12 S1L 

S22 S2L 

0 SLL 

THEOREM (MYSOVSKIH). The polynomials 

Fj(x) = Slij01(X) + S2is02(X) + * + s1jPi(x) (j = 1, 2, ... , L) 

form an orthonormal system. 
Now in the special case n = 1, one has f j(x) = xi-' with L = N + 1, and M is 

just the "Hankel" matrix in the moments. Moreover, we know in this case 
Fj(x) = pj-1(X), a polynomial of degree j - 1, and { pj(x) }?Vo satisfy 

(4.2) Xpjil(X) = 13j-lPj-2(X) + apj-l(x) + /3pj(x) , j = 1, ** *, N 

where p-,(x) -0. Comparing the coefficients of xi and xi- on either side of this 
identity, one gets 

sjj = ojsj+l j+ 

sjiij = aisii + fjsj,j+l 

and so 

03 Sj,j Sjj-l,j Sj,j+l 

Sj+1,j+1 sij sj+1,j+1 

Further, if 

ril r12 riN+1 

r22 * . . r2,N+l 

R= 

rNv+ ,N+1 

a straightforward computation shows that 

sjj = r Sjj+i 'rjj+, 

Thus 
r+_ = j= 1,2, - ,N, 

(43) i+, j = 1 , 2, * *N 

with ro0o = 1, ro i = 0. 
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5. Description of Computational Procedures. In the microfiche section of this 
issue there are three ALGOL 60 procedures for performing the algorithms presented 
above. We have tried to keep the identifiers as close to the notation of the equations 
as possible without sacrificing storage or efficiency. The weights and abscissas 
of the quadrature rule are the result of the procedure GAUSSQUADRULE which 
must be supplied with the recurrence relation by either procedure GENORTHOP- 
OLY or CLASSICORTHOPOLY. The former requires the moments of the weight 
function and the latter the name of the particular orthogonal polynomial. A short 
description of each procedure follows. 

CLASSICORTHOPOLY produces ,uo and the normalized three term recurrence 
relationship (aj, bj) for six well-known kinds of orthogonal polynomials: 

KIND = 1, Legendre polynomials Pn(x) on [-1.0, + 1.0], w(x) = 1.0. 
KIND = 2, Chebyshev polynomials of the first kind Tn(x) on [-1.0, +1.0], 

C (X) = (1 - XI)-12 

KIND = 3, Chebyshev polynomials of the second kind U.(x) on [-1.0, + 1.0], 
W(X) = (1 -XI)+112 

KIND = 4, Jacobi polynomials Pn(a?)(x) on [-1.0, +1.0], w(x) - 

(1 - x)a(l + x)# for a > -1 and j > -1. 
KIND = 5, Laguerre polynomials Ln(a)(x) on [0, + oo), w(x) = ezxxa for 

a> -1. 
KIND = 6, Hermite polynomials HII(x) on (- oo, + oc), w(x) = e-x2. 
Notice that this procedure requires a real procedure to evaluate the gamma 

function rJ(x). 
GENORTHOPOLY uses the 2N + 1 moments of the weight function which 

are supplied in MU[0] through MU[2 0 N] to compute the a/s and 0j3's of formula 
(4.2). First, the Cholesky decomposition (formula 4.1) of the moment matrix is 
placed in the upper right triangular part of the array R, then the formulas (4.3) are 
used to compute the a/s and 0j3's which are placed in the arrays A and B respec- 
tively. 

GAUSSQUADRULE has two modes of operation controlled by the Boolean 
parameter SYMM which indicates whether the tridiagonal matrix is symmetric 
or not. When the recurrence relation is produced by GENORTHOPOLY or by 
CLASSICORTHOPOLY, SYMM is true. If SYMM is false, the matrix is sym- 
metricized using the formulas (2.2). The diagonal elements a i are stored in A[I] and 
the off diagonal elements fi are stored in B[J]. 

Beginning at label SETUP, several calculations and initializations are done: the 
1, norm of the tridiagonal matrix and the relative zero tolerance are computed; the 
first component of each eigenvector W[I] and the Q-R iteration are initialized. 
LAMBDA is a variable subtracted off the diagonal elements to accelerate con- 
vergence of the Q-R iteration and control to some extent in what order the eigen- 
values (abscissas) are found. It begins with a value (= NORM) outside and to 
the right of the interval containing the abscissas and moves to the left as the 
abscissas are found; thus the abscissas will be in ascending order in the array T 
(just to be sure an exchange sort is used at label SORT). 

The maximum (EIGMAX) of the eigenvalues (LAMBD1 and LAMBD2) of 
the lower 2 X 2 submatrix is compared to the maximum (RHO) from the last 
iteration. If they are close, LAMBDA is replaced by EIGMAX. This scheme seems 
to stabilize LAMBDA and speed convergence immediately after deflation. 
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An eigenvalue has been found when the last off diagonal element falls below 
EPS (see Section 6). Its value is placed in T[I] and the corresponding weight W[I] is 
computed from formula (2.5). This convergence test and the test for matrix splitting 
are done following label INSPECT. Only the lower block (from K to M) needs to be 
transformed by the Q-R equation given in formulas (3.3). These equations have 
been rearranged to reduce the number of computer operations as suggested by 
W. Kahan in a report by Corneil [2]. 

TABLE 

A Comparison of the Abscissas and Weights of the 
Gauss-Laguerre Quadrature Rule with a = -0.75 and N = 10 

Analytic Recurrence Moment Matrix Concus et al [1]. 
Relationship + QR + QR 

ABSCISSAS 

1 2.766655867080153 -2 2.766655862878470 -2 2.7666558670797210-2 
2 4.5478442260596421?-1 4.5478442193687141--1 4.54784422605949 -1 
3 1.38242576115861910 1.3824257592563141 1.38242576115 
4 2.833980012092737 2.833980008561162 2.833980012092697 
5 4.850971448764X- 4.850971444423ol 4.850971448764914 
6 77. 5000l09426429 7.500010935563904 7. 500010942642825 
7 l.o8884o8023834T +1 1.08884080151 10 0+1 l.0888408023834404 10+1 
8 1.519947804423765 +1 1.51994780341 0 1. 519947804423760310+1 

2.078921462107011+l 2.078921460 2 0+1 .0789214621070107 
-10 ~ ~ ~ 271~ .08246171010+ 

10 0+~~10 2_____578756014921065+ 10 2.8573060164922253+1 2.85750601529 401 +1 2.8573o6ol64922106 +1 
10 10~~~~_L1 

WEIGHTS 

1 2.566765557790853 2.566765556932285 2.566765557790772 
2 7.733479703443168 0-1 7 .733479706154000 10-1 7.7334797034434 10-1 
3 2.33132834973218210-1 2.33132835367822310-1 2.3313283497321910-1 
4 4.6436747o8956Zyj1 -2 4.6436747249929091 -2 4.6436747o895670 -2 
5 5.54912350203625610 3 53.549l2551829512l0-5 5.549123502o362510-3 
6 3.656466626776441 -4 3.65646665318600710-4 3.6564666267763810-4 
7 1. 18687985710252501 -5 1.186879867642l59l0 -5 1.1868798571024510 -5 
8 1.5844l09420568471-7 1.5844109585501441 -7 1.5844lo9420567810-7 
9 6.1932667267967'l0-10 6.19326679751855810-10 6.19326672679684l0-l0 

10 3.0377599265l76915-13 3.03775996169845l30 3.037759926517501 -13 

(Underlined figures are those which disagree with Concus et al [1].) 

6. Test Program and Results. The procedures in the microfiche section have 
been extensively tested in Burroughs B5500 Algol and IBM OS/360 Algol. There 
are two machine dependent items which must be mentioned. First, the constant 
used to define the "relative zero tolerance" EPS in procedure GAUSSQUADRULE 
is dependent on the length of the fraction part of the floating-point number repre- 
sentation (= 8-1' for the 13 octal digit fraction on the B5500, and = 16-14 for a 14 
hexadecimal digit long-precision fraction on the IBM 360). Second, the moment 
matrix M defined in Section 4 usually becomes increasingly ill conditioned with 
increasing N. Thus the round-off errors generated during Cholesky decomposition 
in GENORTHOPOLY cause an ill conditioned M to appear no longer positive 
definite and the procedure fails on taking the square root of a negative number. 
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The procedure GAUSSQUADRULE proves to be quite stable and when the 
recursion coefficients are known or supplied by the procedure CLASSICORTHOP- 
OLY it loses only several digits off from full-word accuracy even for N = 50. Pro- 
cedure GENORTHOPOLY usually failed to produce the recursion coefficients 
from the moments when N was about 20 for the IBM 360. 

The driver program given in the microfiche section of this issue is designed to 
compare the two methods of generating the quadrature rules-from the moments or 
the recursion coefficients. N can be increased until GENORTHOPOLY fails. 
Numerical results may be checked against tables for Gauss-Legendre quadrature 
in [11] and Gauss-Laguerre quadrature in [1]. In the Table, we compare the abscissas 
and weights of the Gauss-Laguerre quadrature rule with a = -0.50 and N = 10 
computed by: (A) the analytic recurrence relationship and the Q-R algorithm; 
(B) the moment matrix and the Q-R algorithm; (C) Concus et al. [1]. The calcula- 
tions for (A) and (B) were performed on the IBM 360. 
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JACOBI: MERO := 2t (ALrrvrA+1)xMMA(ALnA+l)xGAIwA(cETA+l) 

/AW4A(ALA+rETA+2) 

count P(ALFA,BETA)(x) on [-1, +1), 

c(x) - (l-xtALFAx(lx)tBrTA, ALFA AND BETA > -1; 

ABI := 2+ALFA+BETA; A[1] : (BETA-ALFA)/ABI; 

B[1] : sqrt(4x(1+AIA)x(l+rrA)/((ABI+l)yjIt2)); 

A2B2 : BETAt2-ALFAt2; 

for I :- 2 step 1 until N-1 do 

begin ABI :- 2X1+ALFA+BETA; 

A[I] := A2B2/((ABI-2)xABI); 

B[I ] :- sqrt(4x4X(I+ALPA)x(I+rr)x(I+AgItyBETA)/ 

((ABIt2-1)IABIt2)); 

end; 

ABI : 2*ALF+AETA; 

A [1 ] : a A2B2/( (ABNI-2)XAI); 

LAWERRE: MERO : GAA(ALF+.0); 

coment L(ALFA)(x) on (o, ImINITn) 

cg(x) w EP(-x)XtnLrPA, ALFA > -1 

for I :- 1 step 1 until W-1 do 

~sza 1A I] := 2XI-1+ALFA; 

BII] :- -sqrt(IX(I+ALFA)I); 

end; 

A[N] := 2l1-1+ALFA; 2 to RETURI; 



wuzzo :~sqrt fl); 

cainitnt }{(x) on (-nunan+ mrInrnt), c(x) KXP(-x?2) ; 

for I :- 3 step 1 Anti N-Al 'o 

b l Af I] := 0; B[I] :- sqrt(I/2) end, 

MNW] :- 0; 

rEH: end ~AS$ICY 



procedure GENORTHOPOLY(N, 1411, A, B); 

value N; integer N; 

real array ML!, A, B; 

begin comment Given the 2+1 nents (MU) of the weight function, 

rnerate the recursion coefficients (A, B) of the normalized 

orthogonal polynomials.; 

real array R[O:N+lO:N+1]; real SUM 

inter I, J, K; 

cent Place the Cholesky decomposition of the iwmnt matrix in R[ ]; 

for I : 1 step 1 until ?14 do 

for J ; I step 1 until 191 do 

begin SUM :. 11J[(I+J-2]; 

for K :- I-1 sfg -1 until 1 do 

SUM := S - R[KI]R[(K,J]; 

R[IpJ :- (if I M J then sqrt(SJM) else SUTI/R[II]); 

end; 

comnt Compute the recursion coefficients from the decomposition R( ]; 

R[OOJ := 1.0; R[O,1J :- O; 

ACKf] := R[NJN>1J/RNJINPI]<-1JBN]/R[N-1JN1]; 

for J ta 1-1 step -1 until 1 do 

beaia B[J] := R[J+lJ+1]/R[FJ,J]; 

A(JJ] :- RJtlJ1] /R[ JJJ]-R[J-l,J3]/R[fJ..lJ-1l]; 

end, 

enA G Y ; 



Procedure GAUSqUADWIE(NI A, B, C, NMJO, SY1W, T, W); 

value N,. KUZERO 814; 

nteer 1N; rEn 1EO; boolean 810; 

rel arl X A, B, C, T7 W ; 

belam conent Given the coefficients (A, B, C) of the three term 

recurrence relation: P(K) - (A(K)X+B( K) )P(K-i) -C()P(K-2),J 

this procedure computes the abscissas T and the weights W 

of the Gaussian type quadrature rule associated vith the ortho- 

gooal polynomad by Q type iteration with origin shifting.; 

inteaer I, J, K,. N, Ml; 

redl NRM, EPS, CTa, 8T, F Q, M AI, AJ, A2, EIGQIAX, 

LAIA, LOAM , LAGD2, RHOJ R, DET, BI, BJ, B2, WJ, CJ; 

boolean EX; 

redl rocedure MAX(X,Y); value X, Y; read X1, ; 

MAX :- if 1> Y the- X else Y; 

if 81Y4 then m to SETUP; 

Rent 8ytrize the matrix, if required. 

for I :- 1 steP 1 until N-l do 

besg :- A[I]; A[I| :. B1I]/Al; 

all] :- sqrt(C[I+l1/(ADSAI+1])); 

gnd; 

A[N] : -B[4N]A[/]; 

comat Fit the Mxima rw ama norm and initialize WE 

SETUP: B(O] :, 0; N0W :- 0; 

for I ;- 1 step 1 until 3-1 do 

b tl : lUS(N^B4 ~ab(B[I-1])'+abs(A[-1]) fabis(B[I3)); 

V[1] :. 0; 

end; 1I3 ts o; ~ ~ ~ ~ ~ A 



NORM :- MAX(NORM, abs(A[N])+abs(B(N-l)); 

FPS :- NOM16.0t(-14); comnt Relative zero tolerance 

W[I] := 1.0; W(i] :- 0; M : N; 

IAK'DA : LA IAMD2 : O NOW; 

coant Look for convergence of lover diagonal element ;. 

INSPECr: if M = 0 then i to SWRT else I := K : 1M1 :w M-i; 

if abs(Bft1)) < EPS then 

begin T(M] * A(M]; W[M] := MUZXzOXWM]t2; 

RHO ;a (if IAMBD1 < LAWD2 then LASD1 else LAMBD2); 

M :W MI; g to INSCT; 

end; 

conment Small off diaoal element means matrix can be split 

for -I = I-1 while abs(BrI]) > EF do K := I; 

cement Find eigenvalues of lower 2X2 and select accelerating shift 

B2 :- B[(J]t2; DET :a sqrt((A(Nl]-ArM4f)t2+4.oxB2) 

M ; AMIl]+A(M]; 

LAMBD2 :- 0.5X(if AA > 0 then AM+DET else AA-DET); 

LAUB1l :w (A[M1)X[M ]-2)LABD; 

EIG4AX := NAX(IAUD1, LABD2); 

if abs(EIGX-RMH) < 0.125xabs(hIGAX) then 

lAMBDA :- RHO) :- EIIAX else RHO :- EIfX; 

cont Transform block from K to M 

CJ :- B[K]; B[K-lJ :- A(KJ-LASD; 

for J := K step 1 until Ml do 

begi R :- sqrt(CJt24B(J-1lt2) 

ST := CJ/R; CT :- B(J-l]/R; AJ :- A(J1; 

B(J-l] :- H; a :- B(J+tlTP; 



B[J+1] O= -B(J13crM; 

F : AJ)VT + B(J]4T; 

Q : B(J]tf + A[J+lflI; 

A(J] :=F-CT + QST; B(J] : FT - QXCT; 

WJ *: W(J?J 

A[J+lJ := AJ+A(J+1]-AtJ]; 

WNJ] :*- WJXCtv[J+lJT; WiJ+i] -a WJXST4I(tJl+CT; 

end; 

B[K-lj :n 0- to DWW; 

sca& Arrag abscissas In ascending order ; 

SO=*: for M :a Nte p until 2 do 

?saiu EX :- fai;- 

for I :s >2 1 until do 

if T(I-1] > T[IJ tln 

WJ := T?1-]; TI-l] :- TEIi; TI] :a WJ; 

WJ :- WI-l]yj W(I1-] :- WI]; WEI] :- WJ; 

EX :- true 

en; 

Ri th: end Gto 



Comment Driver program for GAUSSQUADRtJIZ; 

real arraE A, C, T, W(l:10], 10(O:20], B(O:l0]; 

real MIUERO; integer I, N; 

N :- 10; 

cent legendre polynamials. 

outstring (IL, 'Legendre Quadrature.'); 

CIA8SICOfhPOLYy(j, 0, 0, N, A, B, W.ZKRO); 

GAUBSQUADRLE(N, A, B, C, MEERO, tre T, W); 

outstring (1, abscissass:'); outarray (li T); 

outstring (1, 'nights:'); outarray(l, W); 

for I : 0 ste1 untin Sxw do u[i] : o; 

for I :- 0 step 2 until 2XN do 1U(I] :- 2.0/(I+1); 

UEOrHOPOLY (1i, 11, A, B); 

MERO : MU0(0]; 

MWSQUADRMH (N, A, B, C, MUtRO, tr T, W); 

outstring (I, "abscissas:'); outarray (1, T); 

outstring (Ci 'weights:'); outarray (i, W); 

coinnt Lguerre polynmials.; 

outstring (1, 'Laguerre Qudratur. alpha - -0.5'); 

CLASICORTHOPOLY (5, -0.5, 0, N, A, B, WXR); 

GAUSSquDUwn (N, A, B, C, wr, true T, W); 

outatring (1, abscissass:"); outarray (i, T); 

outatring (1, 'nights:,); outarray (1, w); 

HOJUO :- Z4ERO : l.T77253850905516; comut g (05); 
for I :- 1. ste1p I wtil 2XNldo 



EIOR1IOLY (N, MU, A, B); 

GKI3QUADRUIE (N, A, B, C, MZERO, true,. T, W); 

outatr (1, 'abscissas:'); outarrty (1, T); 

outatring (1., weights:'); outarray (C, W); 

end; 



OcHPUTAfIlON OF GALOIS GROUP ELDUNT 

OF A POLYNOKIAL EQUATION 

E. J.. CZCKAYNE 

FORTRAN PROGRAM 



C PRINTS IRREDUCIBLE FACTORS MOD P-OF INTEGER POLYNOMIAL DEGREE D 
C (LESS TMAN 10).COEFFICZENTS OF POLYNOMIAL ARE A11)...A.D*X) IN 
C ASCENDING POWERS OF X. 
C 
C 

INTEGER AM1O).A1(1O.06S15*IREM(SA.IQUO(IO).P.D 
MODU1.N2)}wN1-%2*(N1/N2) 
READ t(238) A.D#P 
L0o 

CALL VECTO (JREM15) 
CALL VECTO UtQUOO) 

c 
C GENERATES MONtC POLYS B DEGREE N*LE*4 
C 

88 CALL VECTO(8.5) 

B I N 1 1.1- 
33 S(1).8h1)+1 

DO 20 IsboN 
IF (13-P) 34,19.34 

19 BII)SO 
Ijf (t-N)- 20,*8620 

20 S(I+*13( I+1)+1 
C 
C TEST FOR FACTOR B 
C 

34 DO 39 t3w1*10 
39 AI(131.A(13) 

CALL VECTO (IQUO*10 
CALL I@DIV IA1.L+198*0+1.IOUOZIRE4) 
I SUM"0 
DO 54 19.1.N 
IREME 19)WMO1)CIR(N( 29) P) 
IF IIREMEI9)) 111,54.54 

Ill IRE1I9s1)wIREM1I9)+P 
54 !SUMwISUM+IREMtI9) 

CALL VECTO (IREMS) 
IF (ISUM) 33,112.33 

C 
C FACTOR OF DEGREE N 
C 

112 DO 24 ITsl.10 
IGUOI I7)wMOQ1(IQUO1I 7) PP 
IF (IOUO(1731 113924.24 

113 IOUO(I7).IOUO(I7)+P 
24 CONTINUE 

WRITE (3,1273 N.8 
LsL-N 
IF (L-(2*N-1)) 30,30.114 

114 DO 58 14.*140 
58 A(I41sIulO(I43 

GO TO 34 
C 
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